- 2011/JAN/06
- 2011/APR/06
- 2011/JUL/06
- 2011/AUG/06
- 2012/APR/09
- 2012/JUL/06
- 2012/DEC/06
- 2013/AUG/06
- 2013/NOV/06
- 2014/JAN/06
- 2014/MAR/06
- 2015/MAR/06
- 2015/AUG/06
- 2016/APR/06
- 2016/JUL/07
- 2018/APR/06
- 2018/JUL/06
- 2018/AUG/07
- 2018/SEP/06
- 2018/NOV/06
- 2018/DEC/06
- 2020/JAN/06
- 2020/OCT/09
- 2020/DEC/06
- 2021/JAN/08
- 2021/FEB/08
- 2021/MAR/10
- 2021/APR/06
- 2021/OCT/09
- 2021/NOV/06
- 2022/FEB/08
- 2022/MAR/09
- 2022/JUN/06
- 2021/JUL/10
- 2021/SEP/06
- 2016/JUN/06
- 2016/FEB/06
- 2014/NOV/09
- 2013/JUN/06
- 2013/MAR/06
- 2023/JAN/06
- 2011/FEB/06
- 2023/APR/06
- 2023/JUN/06
- 2023/OCT/06
- 2024/JUL/06
- 2024/NOV/06
Q8. A ship 160m long and 8700 tonne displacement floats at a waterline with
Station
AP
½
1
2
3
4
5
6
7
7 ½
FP
½ ordinate
0
2.4
5.0
7.3
7.9
8.0
8.0
7.7
5.5
2.8
0m
While floating at this waterline, the ship develops a list of 10° due to instability. Calculate the negative metacentric height when the vessel is upright in this condition
Q7. A ship of length 120 m displaces 11750 tonne when floating in sea water of density 1025 kg/m3. The center of gravity is 2m above the center of buoyancy and the waterplane is defined by the following equidistant half-ordinates given in Table Q1:
Station
AP
1
2
3
4
5
6
7
FP
Half-breadth (m)
3.3
6.8
7.6
8.1
8.1
8.0
6.6
2.8
0
Calculate EACH of the following:
(a) The area of the waterplane;
(b) The position of the centroid of the waterplane from midships;
(c) The second moment of area of the waterplane about a transverse axis through the centroid;
(d) The moment to change trim one centimeter (MCT1cm).
Question Topic: Numerical Question
Page 18 of 40